(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(f(b, z0, c)) → c1(F(z0, c, z0))
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(f(b, z0, c)) → c1(F(z0, c, z0))
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

ACTIVE, F, PROPER, TOP

Compound Symbols:

c1, c3, c4, c5, c6, c9, c10

(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 1 of 7 dangling nodes:

ACTIVE(f(b, z0, c)) → c1(F(z0, c, z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

ACTIVE, F, PROPER, TOP

Compound Symbols:

c3, c4, c5, c6, c9, c10

(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1)) by

ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2), ACTIVE(c))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2), ACTIVE(c))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2), ACTIVE(c))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, PROPER, TOP, ACTIVE

Compound Symbols:

c4, c5, c6, c9, c10, c3

(7) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
ACTIVE(f(x0, c, x2)) → c1(ACTIVE(c))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
ACTIVE(f(x0, c, x2)) → c1(ACTIVE(c))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, PROPER, TOP, ACTIVE

Compound Symbols:

c4, c5, c6, c9, c10, c3, c1

(9) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
ACTIVE(f(x0, c, x2)) → c1
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
ACTIVE(f(x0, c, x2)) → c1
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, PROPER, TOP, ACTIVE

Compound Symbols:

c4, c5, c6, c9, c10, c3, c1, c1

(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2)) by

PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
ACTIVE(f(x0, c, x2)) → c1
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
ACTIVE(f(x0, c, x2)) → c1
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP, ACTIVE, PROPER

Compound Symbols:

c4, c5, c9, c10, c3, c1, c1, c6

(13) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 1 of 17 dangling nodes:

ACTIVE(f(x0, c, x2)) → c1

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP, ACTIVE, PROPER

Compound Symbols:

c4, c5, c9, c10, c3, c1, c6

(15) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP, ACTIVE, PROPER

Compound Symbols:

c4, c5, c9, c10, c3, c1, c6, c6

(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0)) by

TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c9(TOP(ok(c)), PROPER(c))

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c9(TOP(ok(c)), PROPER(c))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c9(TOP(ok(c)), PROPER(c))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP, ACTIVE, PROPER

Compound Symbols:

c4, c5, c10, c3, c1, c6, c6, c9

(19) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP, ACTIVE, PROPER

Compound Symbols:

c4, c5, c10, c3, c1, c6, c6, c9, c9

(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(c)) → c9(TOP(ok(c)))
We considered the (Usable) Rules:

proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
And the Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(F(x1, x2, x3)) = 0   
POL(PROPER(x1)) = 0   
POL(TOP(x1)) = x1   
POL(active(x1)) = 0   
POL(b) = 0   
POL(c) = [2]   
POL(c1(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1, x2, x3)) = x1 + x2 + x3   
POL(c6(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(c9(x1)) = x1   
POL(c9(x1, x2)) = x1 + x2   
POL(f(x1, x2, x3)) = 0   
POL(mark(x1)) = x1   
POL(ok(x1)) = 0   
POL(proper(x1)) = [1] + [2]x1   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
K tuples:

TOP(mark(c)) → c9(TOP(ok(c)))
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP, ACTIVE, PROPER

Compound Symbols:

c4, c5, c10, c3, c1, c6, c6, c9, c9

(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(b)) → c9(TOP(ok(b)))
We considered the (Usable) Rules:

proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
And the Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(F(x1, x2, x3)) = 0   
POL(PROPER(x1)) = 0   
POL(TOP(x1)) = [2]x1   
POL(active(x1)) = x1   
POL(b) = 0   
POL(c) = [1]   
POL(c1(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1, x2, x3)) = x1 + x2 + x3   
POL(c6(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(c9(x1)) = x1   
POL(c9(x1, x2)) = x1 + x2   
POL(f(x1, x2, x3)) = [1]   
POL(mark(x1)) = [1]   
POL(ok(x1)) = x1   
POL(proper(x1)) = [4]x1   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
K tuples:

TOP(mark(c)) → c9(TOP(ok(c)))
TOP(mark(b)) → c9(TOP(ok(b)))
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP, ACTIVE, PROPER

Compound Symbols:

c4, c5, c10, c3, c1, c6, c6, c9, c9

(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0)) by

TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
K tuples:

TOP(mark(c)) → c9(TOP(ok(c)))
TOP(mark(b)) → c9(TOP(ok(b)))
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, ACTIVE, PROPER, TOP

Compound Symbols:

c4, c5, c3, c1, c6, c6, c9, c9, c10

(27) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c1(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
K tuples:

TOP(mark(c)) → c9(TOP(ok(c)))
TOP(mark(b)) → c9(TOP(ok(b)))
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F, TOP

Compound Symbols:

c4, c5, c9, c10

(29) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 3 of 5 dangling nodes:

TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F

Compound Symbols:

c4, c5

(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1, x2, x3)) = x3   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(mark(x1)) = 0   
POL(ok(x1)) = [2] + x1   

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
S tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
K tuples:

F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F

Compound Symbols:

c4, c5

(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1, x2, x3)) = x2 + [3]x3 + [2]x2·x3 + x1·x3   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = [3] + x1   

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
S tuples:none
K tuples:

F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
Defined Rule Symbols:

active, f, proper, top

Defined Pair Symbols:

F

Compound Symbols:

c4, c5

(35) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(36) BOUNDS(O(1), O(1))